Respuesta :

Answer:

1)Perimeter=23.20 cm

 Area = 32.96 [tex]cm^{2}[/tex]

2)Perimeter= 32.93 m

  Area= 77.70 [tex]m^{2}[/tex]

Step-by-step explanation:

1) The above problem can be broken in 2 parts, rectangle with 3 sides and a semicircle.

The perimeter can be given as, for rectangle,

= [tex](2)(6.2) + 2(2.1) = 16.6 cm[/tex]

The perimeter of semicircle can be given by,

=[tex]\pi (R) = \pi (2.1) = (\frac{22}{7})(2.1) = 6.6cm[/tex]

Thus, the total perimeter is = [tex]16.6 + 6.6 = 23.2[/tex]

The area can be found as, for rectangle,

= [tex](6.2)(4.2) = 26.04 cm^{2}[/tex]

for semicircle,

= [tex]\frac{\pi(R^{2})}{2} = \frac{\pi((2.1)^{2})}{2} = 6.9237cm^{2}[/tex]

Thus, the total area is = [tex]26.04 + 6.9237 = 32.9637cm^{2}[/tex]

2) This figure can be broken into semicircle and triangle with one side open.

The perimeter is given by, of triangle,

= [tex](2)(7.9) = 15.8 m[/tex]

of semicircle,

= [tex]\pi (R) = \pi (5.45) = 17.1285m[/tex]

Thus, the total perimeter is = [tex]17.1285 + 15.8 = 32.9285m[/tex]

The, total area is given by,

A = area of triangle + area of semicircle

A = [tex](\frac{1}{2})(10.9)(5.7) + (\frac{\pi(5.45)^{2}}{2}) = 31.065 + 46.632 = 77.697m^{2}[/tex]