Answer:
There are [tex]5.1034\times 10^{11}[/tex] molecules.
Explanation:
[tex]n=\frac{m}{M}[/tex]
[tex]N=n\times N_A[/tex]
Where:
m = mass of the compound
M = Molar mass of the compound
N = Number of particles / atoms/ molecules
n = Number of moles
[tex]N_A=6.022\times 10^{23} mol^{-1}[/tex] = Avogadro's number
We have:
m = [tex]1.0\mu g=1.0\times 10^{-10} g[/tex]
M = [tex]6\times 12 g/mol+14 \times 1 g/mol+2\times 16 g/mol=118 g/mol[/tex]
[tex]n=\frac{1.0\times 10^{-10} g}{118 g/mol}[/tex]
[tex]N=n\times N_A=\frac{1.0\times 10^{-10} g}{118 g/mol}\times 6.022\times 10^{23} mol^{-1}[/tex]
[tex]N=5.1034\times 10^{11} molecules[/tex]
There are [tex]5.1034\times 10^{11}[/tex] molecules.