The percentage of titanium in an alloy used in aerospace castings is measured in 51 randomly selected parts. The sample standard deviation is s = 0.46. Construct a 95% two-sided confidence interval for σ. Assume population is approximately normally distributed.

Respuesta :

Answer: [tex]0.3849<\sigma<0.5718[/tex]

Step-by-step explanation:

Given : sample size : n= 51

sample standard deviation : s= 0.46

Significance level : [tex]\alpha=1-0.95=0.05[/tex]

Using chi-square distribution, the critical values will be :

[tex]\chi^2_{\alpha/2, n-1}=\chi_{0.025,\ 50}=71.4202[/tex]

[tex]\chi^2_{1-\alpha/2, n-1}=\chi_{0.975,\ 50}=32.3574[/tex]

Confidence interval for population standard deviation ([tex]\sigma[/tex]) :

[tex]\sqrt{\dfrac{s^2(n-1)}{\chi^2_{\alpha/2}}}<\sigma<\sqrt{\dfrac{s^2(n-1)}{\chi^2_{1-\alpha/2}}}[/tex]

Substitute all the values , we get

[tex]\sqrt{\dfrac{(0.46)^2(50)}{71.4202}}<\sigma<\sqrt{\dfrac{(0.46)^2(50)}{32.3574}}\\\\ \sqrt{0.148137361699}<\sigma<\sqrt{0.326973118977}\\\\\approx0.3849<\sigma<0.5718 [/tex]

Hence, the 95% two-sided confidence interval for σ : [tex]0.3849<\sigma<0.5718[/tex]