A basket of negligible weight hangs from a vertical spring scale of force constant 1500 N/m.If you suddenly put a 3.00 kg adobe brick in the basket, find the maximum distance that the spring will stretch. Answer: 3.92 cmIf, instead, you release the brick from 1.00 m above the basket, by how much will the spring stretch at its maximum elongation?

Respuesta :

Answer

given,

spring constant of spring = 1500 N/m

mass of the brick basket = 3 Kg

maximum distance the spring = ?

a) Using conservation of energy

[tex]K_i + m g y_i = K_f + m g y_f + \dfrac{1}{2}ky_f^2[/tex]

initial final and kinetic energy of the system is equal to zero

[tex]0+ 0= 0 + m g (-y_f) + \dfrac{1}{2}ky_f^2[/tex]

[tex]m g y_f=\dfrac{1}{2}ky_f^2[/tex]

[tex]y_f=\dfrac{2mg}{k}[/tex]

[tex]y_f=\dfrac{2\times 3 \times 9.8}{1500}[/tex]

[tex]y_f=0.0392\ m[/tex]

[tex]y_f=3.92\ cm[/tex]

b)Using conservation of energy

[tex]0+3\times 9.8 \times 1 =-3 \times 9.8 y_f + \dfrac{1}{2}\times 1500\times y_f^2[/tex]

[tex]750 y_f^2 -29.4 y_f+ 29.4 = 0 [/tex]

on solving above equation

  y_f = 0.218 m or 21.8 cm