Answer
given,
spring constant of spring = 1500 N/m
mass of the brick basket = 3 Kg
maximum distance the spring = ?
a) Using conservation of energy
[tex]K_i + m g y_i = K_f + m g y_f + \dfrac{1}{2}ky_f^2[/tex]
initial final and kinetic energy of the system is equal to zero
[tex]0+ 0= 0 + m g (-y_f) + \dfrac{1}{2}ky_f^2[/tex]
[tex]m g y_f=\dfrac{1}{2}ky_f^2[/tex]
[tex]y_f=\dfrac{2mg}{k}[/tex]
[tex]y_f=\dfrac{2\times 3 \times 9.8}{1500}[/tex]
[tex]y_f=0.0392\ m[/tex]
[tex]y_f=3.92\ cm[/tex]
b)Using conservation of energy
[tex]0+3\times 9.8 \times 1 =-3 \times 9.8 y_f + \dfrac{1}{2}\times 1500\times y_f^2[/tex]
[tex]750 y_f^2 -29.4 y_f+ 29.4 = 0 [/tex]
on solving above equation
y_f = 0.218 m or 21.8 cm