Respuesta :
Answer:
775 m/s
Explanation:
v = Velocity of sound
f' = Observed frequency = 1240 Hz
f = Actual frequency = 1200 Hz
[tex]v_s[/tex] = Relative speed of the train = 25 m/s
From the Doppler effect we get the relation
[tex]f'=f\frac{v}{v-v_s}\\\Rightarrow v=\frac{f'v_s}{f'-f}\\\Rightarrow v=\frac{1240\times 25}{1240-1200}\\\Rightarrow v=775\ m/s[/tex]
The speed of sound in the atmosphere of Arrakis is 775 m/s
Answer:
The speed of sound in the atmosphere of Arrakis is 775 m/s.
Explanation:
Given that,
Frequency f= 1200 Hz
Second frequency f' = 1240 Hz
Speed = 25 m/s
We need to calculate the speed of sound in the atmosphere of Arrakis
Using formula of frequency
[tex]f'=\dfrac{v}{v-v_{s}}f[/tex]
[tex]f'(v-v_{s})=vf[/tex]
[tex]v=\dfrac{f'v_{s}}{f'-f}[/tex]
Where, [tex]v_{s}[/tex] = speed of the sound
v = speed of the listener
Put the value into the formula
[tex]v=(\dfrac{1240\times25}{1240-1200})[/tex]
[tex]v=775\ m/s[/tex]
Hence, The speed of sound in the atmosphere of Arrakis is 775 m/s.