Answer:
[tex]7.69533\times 10^{-11}\ m^3/s[/tex]
Explanation:
P = Pressure difference = 1.15 kPa
r = Radius = [tex]2.5\times 10^{-5}\ m[/tex]
[tex]\eta[/tex] = Viscosity of liquid = [tex]2.084\times 10^{-3}\ Pas[/tex]
l = Length of artery = [tex]1.1\times 10^{-3}\ m[/tex]
From Poiseuille's equation we have
[tex]Q=\frac{\pi Pr^4}{8\eta l}\\\Rightarrow Q=\frac{\pi 1.15\times 10^3\times (2.5\times 10^{-5})^4}{8\times 2.084\times 10^{-3}\times 1.1\times 10^{-3}}\\\Rightarrow Q=7.69533\times 10^{-11}\ m^3/s[/tex]
The flow rate of blood is [tex]7.69533\times 10^{-11}\ m^3/s[/tex]