A 2.00 m-long 6.00 kg ladder pivoted at the top hangs down from a platform at the circus. A 42.0 kg trapeze artist climbs to a point where her center of mass is at the center of the ladder and swings at the system's natural frequency. The angular frequency (in s −1) of the system of ladder and woman is

Respuesta :

Answer:

f= 0.48 s⁻¹

Explanation:

Given that

Mass of the ladder ,m= 6 kg

L= 2 m

Mass of artist ,M= 42 kg

The total moment of inertia of the both ladder and artist ,I

[tex]I=\dfrac{mL^2}{3}+ Mr^2[/tex]

Here[tex] r=\dfrac{L}{2}[/tex]

[tex]I=\dfrac{mL^2}{3}+ M\dfrac{L^2}{4}[/tex]

[tex]I=\dfrac{6\times 2^2}{3}+ 42\times \dfrac{2^2}{4}\ kg.m^2[/tex]

I=50 kg.m²

The angular frequency f given as

[tex]f=\dfrac{1}{2\pi}\times\sqrt{ \dfrac{m_t\ g D}{I}}[/tex]

Here [tex]m_t= m +M[/tex]

[tex]D=\dfrac{L}{2}\ m[/tex]

[tex]D=\dfrac{2}{2}\ m[/tex]

D=1 m

[tex]f=\dfrac{1}{2\pi}\times\sqrt{ \dfrac{(42+6)\times 9.81\times 1}{50}}\ s^{-1}[/tex]

f= 0.48 s⁻¹