A silver block, initially at 57.2 ∘C, is submerged into 100.0 g of water at 24.8 ∘C, in an insulated container. The final temperature of the mixture upon reaching thermal equilibrium is 26.5 ∘C. Part A What is the mass of the silver block? Express your answer to two significant figures and include the appropriate units. mm =

Respuesta :

Answer:

96.5 grams is the mass of the silver block.

Explanation:

Heat lost by iron will be equal to heat gained by the water

[tex]-Q_1=Q_2[/tex]

Mass of iron = [tex]m_1=?[/tex]

Specific heat capacity of silver= [tex]c_1=0.240 J/g^oC [/tex]

Initial temperature of the silver= [tex]T_1=120^oC[/tex]

Final temperature = [tex]T_2=T=26.5^oC[/tex]

[tex]Q_1=m_1c_1\times (T-T_1)[/tex]

Mass of water= [tex]m_2=100.0 g[/tex]

Specific heat capacity of water= [tex]c_2=4.184 J/g^oC [/tex]

Initial temperature of the water = [tex]T_3=24.8 ^oC[/tex]

Final temperature of water = [tex]T_2=T=26.5^oC[/tex]

[tex]Q_2=m_2c_2\times (T-T_3)[/tex]

[tex]-Q_1=Q_2[/tex]

[tex]-(m_1c_1\times (T-T_1))=m_2c_2\times (T-T_3)[/tex]

On substituting all values:

[tex]-(m_1\times 0.240 J/g^oC\times (26.5^oC-57.2^oC))=100.0 g\times 4.184 J/g^oC\times (26.5^oC-24.8^oC)[/tex]

we get, [tex]m_1 = 96.5 g [/tex]

96.5 grams is the mass of the silver block.