Answer:
96.5 grams is the mass of the silver block.
Explanation:
Heat lost by iron will be equal to heat gained by the water
[tex]-Q_1=Q_2[/tex]
Mass of iron = [tex]m_1=?[/tex]
Specific heat capacity of silver= [tex]c_1=0.240 J/g^oC [/tex]
Initial temperature of the silver= [tex]T_1=120^oC[/tex]
Final temperature = [tex]T_2=T=26.5^oC[/tex]
[tex]Q_1=m_1c_1\times (T-T_1)[/tex]
Mass of water= [tex]m_2=100.0 g[/tex]
Specific heat capacity of water= [tex]c_2=4.184 J/g^oC [/tex]
Initial temperature of the water = [tex]T_3=24.8 ^oC[/tex]
Final temperature of water = [tex]T_2=T=26.5^oC[/tex]
[tex]Q_2=m_2c_2\times (T-T_3)[/tex]
[tex]-Q_1=Q_2[/tex]
[tex]-(m_1c_1\times (T-T_1))=m_2c_2\times (T-T_3)[/tex]
On substituting all values:
[tex]-(m_1\times 0.240 J/g^oC\times (26.5^oC-57.2^oC))=100.0 g\times 4.184 J/g^oC\times (26.5^oC-24.8^oC)[/tex]
we get, [tex]m_1 = 96.5 g [/tex]
96.5 grams is the mass of the silver block.