Respuesta :

Answer:

x = -3, [tex]$ \frac{3}{2} $[/tex]

Step-by-step explanation:

The given quadratic equation is: [tex]$ 2x^2 = 9 - 3x $[/tex]

This can be written as: [tex]$ 2x^2 + 3x - 9 = 0 $[/tex]

To solve a quadratic equation of the form [tex]$ ax^2 + bx + c = 0 $[/tex] we use the formula:

           [tex]$ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} $[/tex]

Here, a = 2; b = 3; c = - 9

Therefore, the roots of the equation are:

[tex]$ x = \frac{- 3 \pm \sqrt{9 - 4(2)(-9)}}{2(2)} $[/tex]

[tex]$ \implies x = \frac{-3 \pm \sqrt{81}}{4} $[/tex]

[tex]$ \implies x = \frac{-3 \pm 9}{4} $[/tex]

We get two values of 'x', viz.,

x = [tex]$ \frac{-3 + 9}{4} $[/tex] and [tex]$ \frac{- 3 - 9}{4} $[/tex]

[tex]$ \implies x = \frac{6}{4} \hspace{5mm} \& \hspace{5mm} \frac{-12}{4} $[/tex]

⇒ x = -3, 3/2

Since the factors of the quadratic equation is asked, we write it as:

(x + 3)(x - [tex]$ \frac{3}{2} $[/tex]) = 0

because, if (x - a)(x - b) are the factors of a quadratic equation, then 'a' and 'b' are its roots.

Multiply (x + 3) and (x - [tex]$ \frac{3}{2} $[/tex] to see that this indeed is the given quadratic equation.