Find the radius R of the orbit of a geosynchronous satellite that circles the Earth. (Note that R is measured from the center of the Earth, not the surface of the Earth.) Use the following values if needed in this problem:
1) The universal gravitational constant G is 6.67×10−11Nm2/kg2.
2) The mass of the earth is 5.98×1024kg.
3) The radius of the earth is 6.38×106m.

Respuesta :

Answer:

R = 1.932 x 10⁸ m

Explanation:

given,

gravitational constant = G = 6.67×10⁻¹¹ N.m²/kg²

mass of the earth = 5.98 x 10²⁴ Kg

radius of earth = 6.38 x 10⁶ m

equating gravitational force on the satellite with the centripetal force acting on it.

     [tex]\dfrac{GMm}{R^2} = \dfrac{mv^2}{R}[/tex]  

     [tex]\dfrac{GM}{R^2} = \dfrac{v^2}{R}[/tex]  

   where v = R ω

     [tex]\dfrac{GM}{R^2} = \dfrac{R^2\omega^2}{R}[/tex]  

     [tex]\dfrac{GM}{\omega^2} =R^3[/tex]  

and [tex]\omega = \dfrac{2\pi}{T}[/tex]

          T = 84600 sec

      [tex]\omega = \dfrac{2\pi}{84600}[/tex]

      [tex]\omega =7.43 \times 10^{-6}\ rad/s[/tex]

     [tex]R^3 = \dfrac{6.67 \times 10^{-11}\times 5.98 \times 10^{24}}{(7.43 \times 10^{-6})^2}[/tex]  

     [tex]R^3 =7.22 \times 10^{24}[/tex]  

            R = 1.932 x 10⁸ m