A 3500 kg spaceship is in a circular orbit 220 km above the surface of Earth. It needs to be moved into a higher orbit of 360 km to link up with the space station at that altitude. In this problem you can take the mass of the Earth to be (5.97 * 10^24)a) How much work, in joules, do the spaceship’s engines have to perform to move to the higher orbit? Ignore any change of mass due to fuel consumption?

Respuesta :

The required work done to move to the higher orbit will be "2.37 × 10^9 Joule".

Gravitational force

According to the question,

Mass of spaceship = 3500 kg

Higher orbit moved = 360 km

Earth's mass = 5.97 × 10²⁴

We know the relation,

Work done, W = Satellite's difference in total energy

                        = [tex]E_f -E_i[/tex]

                        = [tex][-\frac{GMm}{2r_2} ] - [-\frac{GMm}{2r_1} ][/tex]

By taking common, we get

                        = [tex]\frac{GMm}{2} [\frac{1}{r_1} -\frac{1}{r_2} ][/tex]

By substituting the values,

                        = [tex]\frac{6.67\times 10^{-11}\times 5.97\times 10^{24}\times 3500}{2} [\frac{1}{6591\times 10^3} -\frac{1}{6741\times 10^3} ][/tex]

                        = 69684 × 10¹³ [0.1517 × 10⁻⁶ - 0.1483 × 10⁻⁶]

                        = 236.9 × 10⁷ or,

                        = 2.37 × 10⁹ Joule

Thus the above response is correct.

Find out more information about gravitational force here:

https://brainly.com/question/19050897