Respuesta :
Answer:
The magnitude of the average angular acceleration is calculated as [tex]1822.36\ rad/s^{2}[/tex]
Explanation:
Maximum speed that can be attained by the disk, [tex]N_{m}[/tex] = 10,000 rpm
Speed of spinning of the disk, N = 7570 rpm
Time taken to come to rest, t = 0.435 s
Now,
The initial angular velocity is given by:
[tex]\omega = \frac{2\pi N}{60} = 792.73\ rads^{-1}[/tex]
Final angular velocity, [tex]\omega' = 0\ rads^{- 1}[/tex]
The average angular acceleration of the disk can be computed by using the kinematic eqn:
[tex]\omega' = \omega + \alpha t[/tex]
[tex]0 = 792.73 + 0.435\alpha [/tex]
[tex]\alpha = - 1822.36\ rads^{- 2}[/tex]
Answer:
[tex]1822.36\ rad/s^2[/tex]
Explanation:
given,
speed of the disk = 7570 rpm
time of rest of the disk = 0.435 s
average angular acceleration = ?
initial speed of disk = 7570 rpm
= [tex]7570 \times \dfrac{2\pi}{60}[/tex]
= [tex]792.73\ rad/s[/tex]
final angular velocity = 0 rad/s
average angular acceleration = [tex]\dfrac{\omega_f-\omega_i}{t}[/tex]
= [tex]\dfrac{0 -792.73}{0.435}[/tex]
= [tex]1822.36\ rad/s^2[/tex]
the average angular acceleration = [tex]1822.36\ rad/s^2[/tex]