Which is equivalent to (4xy – 3z)2, and what type of special product is it?
16x2y2 + 9z2, the difference of squares
16x2y2 + 9z2, a perfect square trinomial
16x2y2 – 24xyz + 9z2, the difference of squares
16x2y2 – 24xyz + 9z2, a perfect square trinomial

Respuesta :

(4xy - 3z)²

(4xy - 3z)(4xy - 3z)
4xy(4xy - 3z) - 3z(4xy - 3z)
16x²y² - 12xyz -12xyz + 9z²

16x²y² - 24xyz + 9z², a perfect square trinomial.


The correct option is [tex]\boxed{{\mathbf{Option D}}}[/tex].

Further explanation:

The binomial algebraic expression is an algebraic expression that consists two terms and it is separated by plus or minus.

Binomial expression can be mathematically expressed as,

[tex]a + b[/tex]  

The trinomial algebraic expression is an algebraic expression that consists three terms and it is separated by plus or minus.

Trinomial expression can be mathematically expressed as,

[tex]a + b + c[/tex]  

Here, [tex]a,b{\text{ and }}c[/tex] are the real numbers.

The square of the binomial [tex]a + b[/tex] can be written as,

[tex]{\left( {a + b} \right)^2} = \left( {a + b} \right)\left( {a + b} \right)[/tex]  

Given:

The given algebraic expression is [tex]{\left( {4xy - 3z} \right)^2}[/tex].

Step by step explanation:

Step 1:

The square of the binomial [tex]a + b[/tex] can be written as,

[tex]{\left( {a + b} \right)^2} = \left( {a + b} \right)\left( {a + b} \right)[/tex]  

Similarly, the expression [tex]{\left( {4xy - 3z} \right)^2}[/tex] can be written as,

[tex]\begin{aligned}{\left( {4xy - 3z} \right)^2} &= \left( {4xy - 3z} \right)\left( {4xy - 3z} \right) \\&= 4xy\left( {4xy - 3z} \right) - 3z\left( {4xy - 3z} \right) \\\end{aligned}[/tex]  

Step 2:

The distributive property can be used to solve the square of the binomial.

The distributive property can be expressed as,

[tex]a\left( {b + c} \right) = ab + ac[/tex]  

Now apply the distributive property to solve the expression [tex]{\left( {4xy - 3z} \right)^2}[/tex].

[tex]\begin{aligned}{\left( {4xy - 3z} \right)^2} &= 4xy\left( {4xy - 3z} \right) - 3z\left( {4xy - 3z} \right) \\&= 16{x^2}{y^2} - 12xyz - 12xyz + 9{z^2} \\&= 16{x^2}{y^2} - 24xyz + 9{z^2} \\\end{aligned}[/tex]  

Therefore, the expression [tex]16{x^2}{y^2} - 24xyz + 9{z^2}[/tex] is the perfect square of the binomial [tex]\left( {4xy - 3z} \right)[/tex].

The expression [tex]16{x^2}{y^2} - 24xyz + 9{z^2}[/tex] is the trinomial.

Thus, option D a perfect square trinomial [tex]16{x^2}{y^2} - 24xyz + 9{z^2}[/tex] is correct.

Learn more:  

  1. Learn more about the function is graphed below https://brainly.com/question/9590016
  2. Learn more about the symmetry for a function https://brainly.com/question/1286775
  3. Learn more about midpoint of the segment https://brainly.com/question/3269852

Answer details:

Grade: Middle school

Subject: Mathematics

Chapter: Algebraic expression

Keywords: binomial, polynomial, algebraic expression, difference, product, trinomial, distributive property, equivalent, expression, terms, plus, separated, multiply, minus, addition