Answer: b. 1537
Step-by-step explanation:
When prior estimate of population proportion is available , then the formula for sample size: [tex]n=p(1-p)(\dfrac{z^*}{E})^2[/tex]
, where p= prior estimate of population proportion
z*= critical-value.
E= Margin of sampling error.
Let p be the proportion of population gets the flu.
As per given , we have
p=20%=0.20
E= ± 0.02
Using z-table , the critical z-value corresponding to 95% confidence level = z*=1.960
Substitute all the values in the above formula , we get
Required sample size :[tex]n=(0.20)(1-0.20)(\dfrac{(1.96)}{0.02})^2[/tex]
[tex]\Rightarrow\ n=(0.20)(0.80)(98)^2[/tex]
[tex]\Rightarrow\ n=0.16(9604)\\\\\Rightarrow\ n=1536.64\approx1537[/tex] [Rounded to next integer.]
Thus, the minimum sample size needed = 1537
Hence, the correct answer = b. 1537