Given the data:
N2(g), ?H°f= 0.00 kJ mol-1, S° = +191.5 J mol-1 K-1
H2(g), ?H°f = 0.00 kJ mol-1, S° = +130.6 J mol-1 K-1
NH3(g), ?H°f= ?46.0 kJ mol-1, S° = +192.5 J mol-1 K-1
calculate the standard free energy change, ?G° for the reaction:
N2(g) + 3 H2(g) --> 2 NH3(g)

A. +112.3 kJ
B. ?7.4 kJ
C. ?32.9 kJ
D. ?84.6 kJ

Respuesta :

Answer: The standard Gibbs free energy change of the reaction is -32.9 kJ

Explanation:

For the given chemical equation:

[tex]N_2(g)+3H_2(g)\rightarrow 2NH_3(g)[/tex]

  • The equation for the enthalpy change of the above reaction is:

[tex]\Delta H^o_{rxn}=[(2\times \Delta H^o_f_{(NH_3(g))})]-[(1\times \Delta H^o_f_{(N_2(g))})+(3\times \Delta H^o_f_{(H_2(g))})][/tex]

We are given:

[tex]\Delta H^o_f_{(N_2(g))}=0.00kJ/mol\\\Delta H^o_f_{(H_2(g))}=0.00kJ/mol\\\Delta H^o_f_{(NH_3(g))}=-46.0kJ/mol[/tex]

Putting values in above equation, we get:

[tex]\Delta H^o_{rxn}=[(2\times (-46.0))]-[(1\times 0)+(3\times 0)]=-92kJ=-92000J[/tex]

  • The equation for the entropy change of the above reaction is:

[tex]\Delta S^o_{rxn}=[(2\times \Delta S^o_{(NH_3(g))})]-[(1\times \Delta S^o_{(N_2(g))})+(3\times \Delta S^o_{(H_2(g))})][/tex]

We are given:

[tex]\Delta S^o_{(N_2(g))}=+191.5J/mol.K\\\Delta S^o_{(H_2(g))}=+130.6J/mol.K\\\Delta S^o_{(NH_3(g))}=+192.5J/mol.K[/tex]

Putting values in above equation, we get:

[tex]\Delta S^o_{rxn}=[(2\times (192.5))]-[(1\times (191.5))+(3\times (130.6))]=-198.3J/K[/tex]

  • To calculate the standard Gibbs free energy of the reaction, we use the equation:  

[tex]\Delta G^o=\Delta H^o-T\Delta S^o[/tex]

where,

[tex]\Delta H^o[/tex] = standard enthalpy change = -92000 J

T = Temperature = [tex]25^oC=[273+25]K=298K[/tex]

[tex]\Delta S^o[/tex] = standard entropy of the reaction = -198 J/K

Putting values in above equation, we get:

[tex]\Delta G^o=-92000J-(298K\times (-198J/K))\\\\\Delta G^o=-32996J=-32.9kJ[/tex]

Hence, the standard Gibbs free energy change of the reaction is -32.9 kJ