Answer:
The resultant force acting on the object is, [tex]F_{r}[/tex] = 110 N
Explanation:
Given data,
The acceleration of the object, a = 5 m/s²
The mass of the object, m = 10 kg
Let the acceleration be in the horizontal direction.
The force acting on the object,
Fₓ = m x a
= 10 x 5
= 50 N
The gravitational force acting on the object,
F = mg
= 10 x 9.8
= 98 N
The resultant force on the object will be,
[tex]F_{r} =\sqrt{F_{x}^{2}+F^{2} +2 F_{x} F Cos \theta }[/tex]
[tex]F_{r} =\sqrt{F_{x}^{2}+F^{2}[/tex] (∵ θ = 90°)
Substituting,
[tex]F_{r} =\sqrt{50^{2}+98^{2}[/tex]
[tex]F_{r}[/tex] = 110 N
Hence, the resultant force acting on the object is, [tex]F_{r}[/tex] = 110 N