Respuesta :

Answer:

[tex]y=\frac{1}{3}x+\frac{5}{3}[/tex]

Step-by-step explanation:

Let

A(-5,5),B(-2,-4) ----> the given segment

step 1

Find the slope AB

The formula to calculate the slope between two points is equal to

[tex]m=\frac{y2-y1}{x2-x1}[/tex]

substitute the given values

[tex]m=\frac{-4-5}{-2+5}[/tex]

[tex]m=\frac{-9}{3}[/tex]

[tex]m=-3[/tex]

step 2

we know that      

If two lines are perpendicular, then their slopes are opposite reciprocal (the product of the slopes is equal to -1)

so

the slope of the perpendicular bisector is equal to

[tex]m_1*m_2=-1[/tex]

we have

[tex]m_1=-3[/tex]

substitute

[tex](-3)*m_2=-1[/tex]

[tex]m_2=\frac{1}{3}[/tex]

step 3

Find the midpoint segment AB

A(-5,5),B(-2,-4)

The formula to calculate the midpoint between two points is equal to

[tex]M(\frac{x1+x2}{2} ,\frac{y1+y2}{2})[/tex]

substitute the values

[tex]M(\frac{-5-2}{2} ,\frac{5-4}{2})[/tex]

[tex]M(-\frac{7}{2} ,\frac{1}{2})[/tex]

step 4

Find the equation of the line in point slope form

[tex]y-y1=m(x-x1)[/tex]

we have

[tex]m=\frac{1}{3}[/tex]

[tex]M(-\frac{7}{2} ,\frac{1}{2})[/tex]

substitute

[tex]y-\frac{1}{2}=\frac{1}{3}(x+\frac{7}{2})[/tex]

step 5

Convert to slope intercept form

[tex]y=mx+b[/tex]

isolate the variable y

[tex]y-\frac{1}{2}=\frac{1}{3}x+\frac{7}{6}[/tex]

[tex]y=\frac{1}{3}x+\frac{7}{6}+\frac{1}{2}[/tex]

[tex]y=\frac{1}{3}x+\frac{10}{6}[/tex]

simplify

[tex]y=\frac{1}{3}x+\frac{5}{3}[/tex]

see the attached figure to better understand the problem

Ver imagen calculista