Respuesta :
The key idea is that, if a vector field is conservative, then it has curl 0. Equivalently, if the curl is not 0, then the field is not conservative. But if we find that the curl is 0, that on its own doesn't mean the field is conservative.
1.
[tex]\mathrm{curl}\vec F=\dfrac{\partial(5x+10y)}{\partial x}-\dfrac{\partial(-6x+5y)}{\partial y}=5-5=0[/tex]
We want to find [tex]f[/tex] such that [tex]\nabla f=\vec F[/tex]. This means
[tex]\dfrac{\partial f}{\partial x}=-6x+5y\implies f(x,y)=-3x^2+5xy+g(y)[/tex]
[tex]\dfrac{\partial f}{\partial y}=5x+10y=5x+\dfrac{\mathrm dg}{\mathrm dy}\implies\dfrac{\mathrm dg}{\mathrm dy}=10y\implies g(y)=5y^2+C[/tex]
[tex]\implies\boxed{f(x,y)=-3x^2+5xy+5y^2+C}[/tex]
so [tex]\vec F[/tex] is conservative.
2.
[tex]\mathrm{curl}\vec F=\left(\dfrac{\partial(-2y)}{\partial z}-\dfrac{\partial(1)}{\partial y}\right)\vec\imath+\left(\dfrac{\partial(-3x)}{\partial z}-\dfrac{\partial(1)}{\partial z}\right)\vec\jmath+\left(\dfrac{\partial(-2y)}{\partial x}-\dfrac{\partial(-3x)}{\partial y}\right)\vec k=\vec0[/tex]
Then
[tex]\dfrac{\partial f}{\partial x}=-3x\implies f(x,y,z)=-\dfrac32x^2+g(y,z)[/tex]
[tex]\dfrac{\partial f}{\partial y}=-2y=\dfrac{\partial g}{\partial y}\implies g(y,z)=-y^2+h(y)[/tex]
[tex]\dfrac{\partial f}{\partial z}=1=\dfrac{\mathrm dh}{\mathrm dz}\implies h(z)=z+C[/tex]
[tex]\implies\boxed{f(x,y,z)=-\dfrac32x^2-y^2+z+C}[/tex]
so [tex]\vec F[/tex] is conservative.
3.
[tex]\mathrm{curl}\vec F=\dfrac{\partial(10y-3x\cos y)}{\partial x}-\dfrac{\partial(-\sin y)}{\partial y}=-3\cos y+\cos y=-2\cos y\neq0[/tex]
so [tex]\vec F[/tex] is not conservative.
4.
[tex]\mathrm{curl}\vec F=\left(\dfrac{\partial(5y^2)}{\partial z}-\dfrac{\partial(5z^2)}{\partial y}\right)\vec\imath+\left(\dfrac{\partial(-3x^2)}{\partial z}-\dfrac{\partial(5z^2)}{\partial x}\right)\vec\jmath+\left(\dfrac{\partial(5y^2)}{\partial x}-\dfrac{\partial(-3x^2)}{\partial y}\right)\vec k=\vec0[/tex]
Then
[tex]\dfrac{\partial f}{\partial x}=-3x^2\implies f(x,y,z)=-x^3+g(y,z)[/tex]
[tex]\dfrac{\partial f}{\partial y}=5y^2=\dfrac{\partial g}{\partial y}\implies g(y,z)=\dfrac53y^3+h(z)[/tex]
[tex]\dfrac{\partial f}{\partial z}=5z^2=\dfrac{\mathrm dh}{\mathrm dz}\implies h(z)=\dfrac53z^3+C[/tex]
[tex]\implies\boxed{f(x,y,z)=-x^3+\dfrac53y^3+\dfrac53z^3+C}[/tex]
so [tex]\vec F[/tex] is conservative.