Answer:
[tex]W_{max} =Q_C(\dfrac{T_H}{T_C} - 1)[/tex]
Explanation:
given,
Temperature of heat engine operate between
Th (temperature in hot reservoir) and Tc(temperature in cold reservoir)
amount of heat released to = Qc
to find maximum amount of work = ?
now,
efficiency of heat engine
[tex]\eta = 1 - \dfrac{T_C}{T_H} = 1 -\dfrac{Q_C}{Q_H}[/tex]
now,
[tex] \dfrac{T_C}{T_H} = \dfrac{Q_C}{Q_H}[/tex]
[tex]Q_H= \dfrac{T_H}{T_C} Q_C[/tex]
maximum work =
[tex]W_{max} = Q_H - Q_C[/tex]
[tex]W_{max} =\dfrac{T_H}{T_C} Q_C - Q_C[/tex]
[tex]W_{max} =Q_C(\dfrac{T_H}{T_C} - 1)[/tex]
above expression gives the expression of maximum amount of work.