Respuesta :

The area of square is [tex]x^{2}+10 x+25[/tex] square units

Solution:

Given that square has side length (x+5) units

To find: area of square

The area of square is given as:

[tex]\text {Area of square }=\mathrm{a}^{2}[/tex]

Where "a" is the length of side

From question, length of each side "a" = x + 5 units

Substituting the value in above formula,

[tex]\text {Area of square }=(x+5)^{2}[/tex]

[tex]{\text {Expanding }(x+5)^{2} \text { using the algebraic identity: }} \\\\ {(a+b)^{2}=a^{2}+2 a b+b^{2}}\end{array}[/tex]

[tex]\begin{array}{l}{\text {Area of square }=x^{2}+2(x)(5)+5^{2}} \\\\ {\text {Area of square }=x^{2}+10 x+25}\end{array}[/tex]

Thus the area of square is [tex]x^{2}+10 x+25[/tex] square units