Imagine a car traveling around a circular track at a speed of 35 mph and with a centripetal acceleration with a magnitude of 2.0 m/s2. Of the car's speed is doubled to 70 mph, what magnitude of centripetal acceleration will it have?

Respuesta :

When the car's speed is doubled centripetal acceleration is 8 m/s²

Explanation:

We know the equation for centripetal acceleration

                  [tex]a=\frac{v^2}{r}[/tex]

   where v is the linear velocity and r is the radius.

So we have

                  a ∝ v²

                   [tex]\frac{a_1}{a_2}=\frac{v_1^2}{v_2^2}[/tex]

Given that

               a₁ = 2 m/s²

               v₁ = 35 mph

               v₂ = 70 mph

Substituting

               [tex]\frac{a_1}{a_2}=\frac{v_1^2}{v_2^2}\\\\\frac{2}{a_2}=\frac{35^2}{70^2}\\\\\frac{2}{a_2}=\frac{1}{2^2}\\\\a_2=4\times 2\\\\a_2=8m/s^2[/tex]

When the car's speed is doubled centripetal acceleration is 8 m/s²