Explanation:
We know the equation for centripetal acceleration
[tex]a=\frac{v^2}{r}[/tex]
where v is the linear velocity and r is the radius.
So we have
a ∝ v²
[tex]\frac{a_1}{a_2}=\frac{v_1^2}{v_2^2}[/tex]
Given that
a₁ = 2 m/s²
v₁ = 35 mph
v₂ = 70 mph
Substituting
[tex]\frac{a_1}{a_2}=\frac{v_1^2}{v_2^2}\\\\\frac{2}{a_2}=\frac{35^2}{70^2}\\\\\frac{2}{a_2}=\frac{1}{2^2}\\\\a_2=4\times 2\\\\a_2=8m/s^2[/tex]
When the car's speed is doubled centripetal acceleration is 8 m/s²