Answer:
m = 7.086 kg
[tex]T_2 = 597.99 K[/tex]
[tex]S_{gen} = 3.605 kJ/K[/tex]
Explanation:
Given data:
volume of sir - 3 m^3
temperature is t = 295 K
Pressure is = 200 kPa
for air , R = 0.287 kJ/kg k
a) from ideal gas equation we have
PV = mRT
solving for m
[tex]m = \frac{PV}{RT} =\frac{200 \times 3}{0.287 \times 295}[/tex]
m = 7.086 kg
b) by energy balance principle
[tex]E_{in} -E_{out} = \Delta E[/tex]
[tex]W_{paddle} - 0 = mc_v (T_2 -T_1)[/tex]
[tex]1546 - 0 = 7.086 \times 0.72(T_2 - 295)[/tex]
[tex]T_2 = 597.99 K[/tex]
C)ENTROPY
[tex]S_{gen} = \Delta S_{system}[/tex]
[tex]= m c_v ln \frac{T_2}{T_1}[/tex]
[tex]= 7.086 \times 0.72 ln \frac{597.99}{295}[/tex]
[tex]S_{gen} = 3.605 kJ/K[/tex]