Let X be the number of material anomalies occurring in a particular region of an aircraft gas-turbine disk. The article "Methodology for Probabilistic Life Prediction of Multiple-Anomaly Materials"(Amer. Inst. of Aeronautics and Astronautics J.,2006:787-793) proposes a Poisson distribution for X. Suppose that µ=4. a. Compute both P(X≤4) and P(X<4). b. Compute P(4≤X≤ 8). c. Compute P(8≤ X). d. What is the probability that the number of anomalies exceeds its mean value by no more than one standard deviation?

Respuesta :

Answer:

a) [tex]P(X\leq 4)=0.0183+0.0733+ 0.1465+0.1954+0.1954=0.6288[/tex]

[tex]P(X< 4)=P(X\leq 3)=0.0183+0.0733+ 0.1465+0.1954=0.4335[/tex]

b) [tex]P(4\leq X\leq 8)=0.1954+0.1563+0.1042+0.0595+0.0298=0.5452[/tex]

c) [tex]P(X \geq 8) = 1-P(X<8) = 1-P(X\leq 7)=1-[0.0183+0.0733+ 0.1465+0.1954+0.1954+0.1563+ 0.1042+0.0595]=0.0511[/tex]

d) [tex]P(4\leq X \leq 6)=0.1954+0.1563+0.1042=0.4559[/tex]

Step-by-step explanation:

Let X the random variable that represent the number of material anomalies occurring in a particular region of an aircraft gas-turbine disk. We know that [tex]X \sim Poisson(\lambda=4)[/tex]

The probability mass function for the random variable is given by:

[tex]f(x)=\frac{e^{-\lambda} \lambda^x}{x!} , x=0,1,2,3,4,...[/tex]

And f(x)=0 for other case.

For this distribution the expected value is the same parameter [tex]\lambda[/tex]

[tex]E(X)=\mu =\lambda=4[/tex]  , [tex]Var(X)=\lambda=2[/tex], [tex]Sd(X)=2[/tex]

a. Compute both P(X≤4) and P(X<4).

[tex]P(X\leq 4)=P(X=0)+P(X=1)+ P(X=2)+P(X=3)+P(X=4)[/tex]

Using the pmf we can find the individual probabilities like this:

[tex]P(X=0)=\frac{e^{-4} 4^0}{0!}=e^{-4}=0.0183[/tex]

[tex]P(X=1)=\frac{e^{-4} 4^1}{1!}=0.0733[/tex]

[tex]P(X=2)=\frac{e^{-4} 4^2}{2!}=0.1465[/tex]

[tex]P(X=3)=\frac{e^{-4} 4^3}{3!}=0.1954[/tex]

[tex]P(X=4)=\frac{e^{-4} 4^4}{4!}=0.1954[/tex]

[tex]P(X\leq 4)=0.0183+0.0733+ 0.1465+0.1954+0.1954=0.9646[/tex]

[tex]P(X< 4)=P(X\leq 3)=P(X=0)+P(X=1)+ P(X=2)+P(X=3)[/tex]

[tex]P(X< 4)=P(X\leq 3)=0.0183+0.0733+ 0.1465+0.5311=0.7692[/tex]

b. Compute P(4≤X≤ 8).

[tex]P(4\leq X\leq 8)=P(X=4)+P(X=5)+ P(X=6)+P(X=7)+P(X=8)[/tex]

[tex]P(X=4)=\frac{e^{-4} 4^4}{4!}=0.1954[/tex]

[tex]P(X=5)=\frac{e^{-4} 4^5}{5!}=0.1563[/tex]

[tex]P(X=6)=\frac{e^{-4} 4^6}{6!}=0.1042[/tex]

[tex]P(X=7)=\frac{e^{-4} 4^7}{7!}=0.0595[/tex]

[tex]P(X=8)=\frac{e^{-4} 4^8}{8!}=0.0298[/tex]

[tex]P(4\leq X\leq 8)=0.1954+0.1563+ 0.1042+0.0595+0.0298=0.5452[/tex]

c. Compute P(8≤ X).

[tex]P(X \geq 8) = 1-P(X<8) = 1-P(X\leq 7)=1-[P(X=0)+P(X=1)+ P(X=2)+P(X=3)+P(X=4)+P(X=5)+ P(X=6)+P(X=7)][/tex]

[tex]P(X \geq 8) = 1-P(X<8) = 1-P(X\leq 7)=1-[0.0183+0.0733+ 0.1465+0.1954+0.1954+0.1563+ 0.1042+0.0595]=0.0511[/tex]

d. What is the probability that the number of anomalies exceeds its mean value by no more than one standard deviation?

The mean is 4 and the deviation is 2, so we want this probability

[tex]P(4\leq X \leq 6)=P(X=4)+P(X=5)+P(X=6)[/tex]

[tex]P(X=4)=\frac{e^{-4} 4^4}{4!}=0.1954[/tex]

[tex]P(X=5)=\frac{e^{-4} 4^5}{5!}=0.1563[/tex]

[tex]P(X=6)=\frac{e^{-4} 4^6}{6!}=0.1042[/tex]

[tex]P(4\leq X \leq 6)=0.1954+0.1563+0.1042=0.4559[/tex]

The probabilities P(X ≤ 4); P(X < 4); P(4 ≤ X ≤ 8) and P(8 ≤ X) are respectively; 0.6288, 0.4335,

How to calculate poisson's distribution?

We are given that;

µ = 4.

In poisson distribution this is equivalent to λ. Thus, λ = 4

Formula for poisson distribution is;

P(X = x) = [(e^(-λ)) * (λˣ)]/x!

A) We want to find the probabilities P(X ≤ 4) and P(X < 4)

P(X ≤ 4) = P(X = 4) + P(X = 3) + P(X = 2) + P(X = 1) + P(X = 0)

From online binomial probability calculator, we have;

P(X = 4) = 0.1954

P(X = 3) = 0.1954

P(X = 2) = 0.1465

P(X = 1) = 0.0733

P(X = 0) = 0.01832

P(X ≤ 4) = 0.1954 + 0.1954 + 0.1465 + 0.0733 + 0.01832

P(X ≤ 4) = 0.6288

Also; P(X < 4) = P(X = 3) + P(X = 2) + P(X = 1) + P(X = 0)

P(X < 4) = 0.4335

B) We want to find the probability P(4 ≤ X ≤ 8);

P(4 ≤ X ≤ 8) = P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8)

From online binomial probability calculator, we have;

P(4 ≤ X ≤ 8) = 0.5452

C) We want to find P(8 ≤ X);

P(8 ≤ X) = 1 - P(X < 8)

P(8 ≤ X) = 1 - [P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8)

P(8 ≤ X) = 0.05113

Read more about Poisson's Distribution at; https://brainly.com/question/14802212