Answer:
The answer to your question is x ² + y² = 64
Step-by-step explanation:
Process
1.- Find the length of the radius
C (0, 0)
P (0, -8)
d = [tex]\sqrt{(x2 - x1)^{2}+ (y2 - y1)^{2} }[/tex]
d = [tex]\sqrt{(0- 0)^{2}+ (-8 - 0)^{2} }[/tex]
d = [tex]\sqrt{64}[/tex]
d = 8
2.- Find the equation of the circle
[tex](x - h)^{2} + (y - k)^{2} = r^{2} \\[/tex]
h = 0 and k = 0
[tex](x - 0)^{2} + (y - 0)^{2} = 8^{2}[/tex]
x² + y² = 64