Respuesta :
Answer: a) [tex]\dfrac{3V}{h}\ units^2[/tex]
Step-by-step explanation:
We know that the volume of an oblique pyramid is given by :-
[tex]\text{Volume}=\dfrac{1}{3}\text{(Base Area x height) }[/tex]
If the volume of an oblique pyramid with a square base is V units³ and the height is h units.
Then, we have
[tex]V=\dfrac{1}{3}\text{(Base Area x h) }[/tex]
Multiply 3 on both sides , we get
[tex]3V=\text{(Base Area x h) }[/tex]
Divide both sides by h , we get
[tex]\dfrac{3V}{h}=\text{Base Area }[/tex]
i.e. [tex]\text{Base Area }=\dfrac{3V}{h}\ units^2[/tex]
Hence, the expression represents the area of the base of the pyramid = [tex]\dfrac{3V}{h}\ units^2[/tex]
Hence, the correct answer is a) 3 v/h units^2