The volume of an oblique pyramid with a square base is V units3 and the height is h units.Which expression represents the area of the base of the pyramid?
a) 3 v/h unils^2
b) (3 v - h)unils^2
c) (v - 3 h)unils^2
d) v/3h unils^2

Respuesta :

Answer: a) [tex]\dfrac{3V}{h}\ units^2[/tex]

Step-by-step explanation:

We know that the volume of an oblique pyramid is given by :-

[tex]\text{Volume}=\dfrac{1}{3}\text{(Base Area x height) }[/tex]

If the volume of an oblique pyramid with a square base is V units³ and the height is h units.

Then, we have

[tex]V=\dfrac{1}{3}\text{(Base Area x h) }[/tex]

Multiply 3 on both sides , we get

[tex]3V=\text{(Base Area x h) }[/tex]

Divide both sides by h , we get

[tex]\dfrac{3V}{h}=\text{Base Area }[/tex]

i.e. [tex]\text{Base Area }=\dfrac{3V}{h}\ units^2[/tex]

Hence, the expression represents the area of the base of the pyramid = [tex]\dfrac{3V}{h}\ units^2[/tex]

Hence, the correct answer is a) 3 v/h units^2

Answer:

A on edge 2020

Step-by-step explanation: