Match each expression in the left column with the correct product in the right column.
Options 6, -6, 6i, -6i

Answer:
-6
-6i
6i
6
Step-by-step explanation:
1) √4 . √-3 . √-3
[tex]$ \sqrt{4} = 2 $[/tex]
[tex]$ \sqrt{-3} . \sqrt{-3} = (\sqrt{-3})^2 $[/tex]
[tex]$ \sqrt{4} . (\sqrt{-3})^2 = 2 \times -3 = $[/tex] -6
2) √-4 . √-3 . √-3
[tex]$ \sqrt{-4} = 2i $[/tex] .
Therefore, [tex]$ \sqrt{-4} . \sqrt{-3} . \sqrt{-3} = 2. \sqrt{-1} \times -3 = 2i \times (-3) = $[/tex] - 6i
3) √4 . √3 . √-3
[tex]$ \sqrt{4} = 2 $[/tex]
[tex]$ \sqrt{3} . \sqrt{-3} = (\sqrt{3})^2 . \sqrt{-1} $[/tex]
[tex]$ \implies 2 \times 3i = $[/tex] 6i
4) √4 . √3 . √3
[tex]$ \sqrt{4} = 2 $[/tex]
[tex]$ \sqrt{3} . \sqrt{3} = (\sqrt{3})^2 = 3 $[/tex]
Therefore, √4 . √3 . √3 = 2 . 3 = 6