What is the area of the largest rectangle with lower base on the x-axis and upper vertices on the curve y = 27 − x^2? show your work.


answer choice

324

108

18

3

Respuesta :

Answer:

Option B.

Step-by-step explanation:

The given curve is

[tex]y=27-x^2[/tex]

We need to find the area of the largest rectangle with lower base on the x-axis and upper vertices on the curve [tex]y=27-x^2[/tex].

Let the vertex in quadrant I be (x,y), then the vertex in quadrant II is (-x,y) .

Length of the rectangle = 2x

Width of the rectangle = y

Area of a rectangle is

[tex]Area=Length\times width[/tex]

[tex]Area=2x\times y[/tex]

Substitute the value of y from the given equation.

[tex]Area=2x(27-x^2)[/tex]

[tex]A=54x-2x^3[/tex]      .... (1)

Differentiate with respect to x.

[tex]\frac{dA}{dx}=54-6x^2[/tex]

Equate [tex]\frac{dA}{dx}=0[/tex], to find the critical points.

[tex]0=54-6x^2[/tex]

[tex]6x^2=54[/tex]

Divide both sides by 6.

[tex]x^2=9[/tex]

[tex]x=\pm 3[/tex]

The value of x can not be negative because side length can not be negative.

Substitute x=3 in equation (1).

[tex]A=54(3)-2(3)^3[/tex]

[tex]A=162-54[/tex]

[tex]A=108[/tex]

The area of the largest rectangle is 108 square units.

Therefore, the correct option is B.