Answer:
The value of x for the given expression is [tex]\frac{15}{8}[/tex]
Step-by-step explanation:
Given as :
The expression is written
3[tex]\dfrac{1}{2}[/tex] - 1[tex]\dfrac{1}{3}[/tex] × x = 1
Or, 1[tex]\dfrac{1}{3}[/tex] × x = 3[tex]\dfrac{1}{2}[/tex] - 1
Or, [tex]\frac{(1\times 3) + 1}{3}[/tex] × x = [tex]\frac{(3\times 2) + 1}{2}[/tex] - 1
Or, [tex]\dfrac{4}{3}[/tex] × x = [tex]\dfrac{7}{2}[/tex] - 1
Or, [tex]\dfrac{4}{3}[/tex] × x = [tex]\dfrac{7-2}{2}[/tex]
Or, [tex]\dfrac{4}{3}[/tex] × x = [tex]\dfrac{5}{2}[/tex]
∴ x = [tex]\frac{\frac{5}{2}}{\frac{4}{3}}[/tex]
Or, x = [tex]\frac{5\times 3}{2\times 4}[/tex]
I.e x = [tex]\frac{15}{8}[/tex]
So, The value of x = [tex]\frac{15}{8}[/tex]
Hence The value of x for the given expression is [tex]\frac{15}{8}[/tex] Answer