Answer:
The drag force is [tex]1.76\times10^{-2}\ N[/tex]
Explanation:
Given that,
Diameter = 60 cm
Length = 1 m
Air speed = 4.5 m/s
Temperature = 50°C
We need to calculate the Reynolds number
Using formula of Reynolds number
[tex]R_{e}=\dfrac{vl}{\mu}[/tex]
Put the value into the formula
[tex]R_{e}=\dfrac{4.5\times1}{1.900\times10^{-5}}[/tex]
[tex]R_{e}=2.368\times10^{5}[/tex]
We need to calculate the drag coefficient
Using formula of drag coefficient
[tex]C_{d}=\dfrac{2\times0.646}{\sqrt{R_{e}}}[/tex]
Put the value into the formula
[tex]C_{d}=\dfrac{2\times0.646}{\sqrt{2.368\times10^{5}}}[/tex]
[tex]C_{d}=0.002655[/tex]
We need to calculate the drag force
Using formula of drag force
[tex]F_{d}=\dfrac{1}{2}\times C_{d}\times\rho\times A\times v^2[/tex]
Put the value into the formula
[tex]F_{d}=\dfrac{1}{2}\times0.002655\times1.095\times0.6\times1\times(4.5)^2[/tex]
[tex]F_{d}=0.01766\ N[/tex]
[tex]F_{d}=1.76\times10^{-2}\ N[/tex]
Hence, The drag force is [tex]1.76\times10^{-2}\ N[/tex]