Respuesta :
Answer:
492.183 nm
Explanation:
x = Distance from the central maximum to the first minimum = 1.35 mm
l = Distance of screen = 2.13 m
d = Distance of gap = 0.705 mm
m = Order = 1
We have the relation
[tex]tan\theta=\dfrac{x}{l}\\\Rightarrow \theta=tan^{-1}\dfrac{1.35\times 10^{-3}}{2.13}\\\Rightarrow \theta=0.04^{\circ}[/tex]
[tex]dsin\theta=m\lambda\\\Rightarrow \lambda=\dfrac{dsin\theta}{m}\\\Rightarrow \lambda=\dfrac{0.705\times 10^{-3}\times sin0.04}{1}\\\Rightarrow \lambda=4.92183\times 10^{-7}=492.183\ nm[/tex]
The wavelength of the light is 492.185 nm
Answer:
The wavelength of the light is 446.8 nm.
Explanation:
Given that,
Width = 0.705 mm
Distance = 2.13 m
Diffraction pattern = 1.35 mm
Number of order = 1
We need to calculate the wavelength of light
Using formula of wavelength
[tex]y=\dfrac{m\lambda D}{d}[/tex]
[tex]\lambda=\dfrac{yd}{mD}[/tex]
Put the value into the formula
[tex]\lambda=\dfrac{1.35\times10^{-3}\times0.705\times10^{-3}}{1\times2.13}[/tex]
[tex]\lambda=4.468\times10^{-7}\ m[/tex]
[tex]\lambda=446.8\ nm[/tex]
Hence, The wavelength of the light is 446.8 nm.