Ammonia gas is compressed from 21°C and 200 kPa to 1000 kPa in an adiabatic compressor with an efficiency of 0.82. Estimate the final temperature, the work required, and the entropy change of the ammonia.

Respuesta :

Explanation:

It is known that efficiency is denoted by [tex]\eta[/tex].

The given data is as follows.

     [tex]\eta[/tex] = 0.82,       [tex]T_{1}[/tex] = (21 + 273) K = 294 K

     [tex]P_{1}[/tex] = 200 kPa,     [tex]P_{2}[/tex] = 1000 kPa

Therefore, calculate the final temperature as follows.

         [tex]\eta = \frac{T_{2} - T_{1}}{T_{2}}[/tex]    

         0.82 = [tex]\frac{T_{2} - 294 K}{T_{2}}[/tex]    

          [tex]T_{2}[/tex] = 1633 K

Final temperature in degree celsius = [tex](1633 - 273)^{o}C[/tex]

                                                            = [tex]1360^{o}C[/tex]

Now, we will calculate the entropy as follows.

       [tex]\Delta S = nC_{v} ln \frac{T_{2}}{T_{1}} + nR ln \frac{P_{1}}{P_{2}}[/tex]

For 1 mole,  [tex]\Delta S = C_{v} ln \frac{T_{2}}{T_{1}} + R ln \frac{P_{1}}{P_{2}}[/tex]

It is known that for [tex]NH_{3}[/tex] the value of [tex]C_{v}[/tex] = 0.028 kJ/mol.

Therefore, putting the given values into the above formula as follows.

     [tex]\Delta S = C_{v} ln \frac{T_{2}}{T_{1}} + R ln \frac{P_{1}}{P_{2}}[/tex]

                = [tex]0.028 kJ/mol \times ln \frac{1633}{294} + 8.314 \times 10^{-3} kJ \times ln \frac{200}{1000}[/tex]

                = 0.0346 kJ/mol

or,             = 34.6 J/mol             (as 1 kJ = 1000 J)

Therefore, entropy change of ammonia is 34.6 J/mol.