Answer:
The length of the shadow is 3.17 feet .
Step-by-step explanation:
Given as :
The height of the person walking on street = H = 5'6''
∴ 12" = 1 '
So, 6" = [tex]\dfrac{1}{12}[/tex] × 6 = 0.5'
I.e H = 5.5 feet
The angle of elevation of from tip of shadow to sun = Ф = 60°
Let The length of the shadow = X feet
Now, From figure'
Tan angle = [tex]\dfrac{\textrm perpendicular}{\textrm base}[/tex]
Or, Tan Ф = [tex]\dfrac{\textrm AB}{\textrm AO}[/tex]
Or, Tan 60° = [tex]\dfrac{\textrm H}{\textrm X}[/tex]
Or, Tan 60° = [tex]\dfrac{\textrm 5.5 feet}{\textrm X}[/tex]
Or, 1.732 = [tex]\dfrac{\textrm 5.5 feet}{\textrm X}[/tex]
Or, X = [tex]\dfrac{\textrm 5.5 feet}{\textrm 1.732}[/tex]
∴ X = 3.17 feet
So, The length of the shadow = X = 3.17 feet
Hence, The length of the shadow is 3.17 feet . Answer