Solve for x

-15x+60 <_105 AND 14x+11<_-31

A. x<_-3
B. x>_-3
C. x=-3
D. There are no solutions
E. All values of x are solutions

Respuesta :

Answer:

Option C. x=-3

Step-by-step explanation:

we have

[tex]-15x+60\leq 105[/tex] ----> inequality A

solve for x

subtract 60 both sides

[tex]-15x\leq 105-60[/tex]

[tex]-15x\leq 45[/tex]

Divide by -15 both sides

Remember that when you multiply or divide both sides of an inequality by a negative number, you must reverse the inequality symbol

[tex]x\geq -3[/tex]

The solution of the inequality A is the interval  [-3,∞)

we have

[tex]14x+11\leq -31[/tex] ----> inequality B

Solve for x

subtract 11 both sides

[tex]14x\leq -31-11[/tex]

[tex]14x\leq -42[/tex]

Divide by 14 both sides

[tex]x\leq -3[/tex]

The solution of the inequality B is the interval (-∞,-3]

The solution of the system is

(-∞,-3] ∩ [-3,∞) =-3

therefore

The solution  is x=-3