Respuesta :

Answer:

Explanation:

The general equation for the disk with moment of inertia I when given small angular displacement  [tex]\theta [/tex] is given by

[tex]I\frac{\mathrm{d^2} \theta }{\mathrm{d} t^2}=-k\theta[/tex]

[tex]\frac{\mathrm{d^2} \theta }{\mathrm{d} t^2}+\frac{k\theta }{I}=0[/tex]

Replacing

[tex]\frac{k\theta }{I}=\omega ^2[/tex]

where [tex]\omega[/tex] is the angular frequency of oscillation

General solution for this Equation is given by

[tex]\theta =\theta _{max}\sin \left ( \omega t+\phi \right )[/tex]

where [tex]\theta _{max}=maximum\ angular\ displacement[/tex]

[tex]\phi =Phase\ difference[/tex]

Thus K can be written as

[tex]k=I\omega ^2[/tex]