Answer:
[tex]W=\frac{-23+23\sqrt{5}}{2}\ ft[/tex]
[tex]W=14.2\ ft[/tex]
Step-by-step explanation:
Let
L ----> the length of rectangle in ft
W ----> the width of rectangle in ft
we know that
[tex]\frac{L}{W} =\frac{1+\sqrt{5}}{2}[/tex] -----> equation A
[tex]L=23\ ft[/tex]
substitute the value of L in the equation A
[tex]\frac{23}{W} =\frac{1+\sqrt{5}}{2}[/tex]
[tex]W=\frac{46}{1+\sqrt{5}}[/tex]
Simplify
[tex]W=\frac{46}{1+\sqrt{5}}(\frac{1-\sqrt{5}}{1-\sqrt{5}})[/tex]
[tex]W=\frac{46(1-\sqrt{5})}{1-5}[/tex]
[tex]W=\frac{46-46\sqrt{5}}{-4}[/tex]
[tex]W=\frac{23-23\sqrt{5}}{-2}[/tex]
[tex]W=\frac{-23+23\sqrt{5}}{2}[/tex]
[tex]W=14.2\ ft[/tex]