Answer:
The coordinates of the fourth vertex is ( 2.1 , -3.6)
Step-by-step explanation:
Given:
The vertices are ( -2.3 and −3.6), (−2.3, and 2.2), and (2.1, and 2.2).
To Find :
The fourth coordinate = ?
Solution:
Let (a,b) be the missing coordinates
Now let us use the the mid point formula and find the missing coordinate.
Let ( -2.3 ,−3.6) be the point A
Let (−2.3,2.2) be the point B
Let (2.1, 2.2) be the point C
The mid point of AC should be BD
Step 1: Finding The mid pint of AC
The mid pint of AC
[tex](\frac{(-2.3+2.1)}{2} , \frac{(-3.6+2.2)}{2})[/tex]
[tex](\frac{(-0.2)}{2} , \frac{(-1.4)}{2})[/tex]
[tex](-0.1, -0.7)[/tex]
Step 2: Lets Equate the midpoints'
The mid pint of BD
=>[tex](\frac{(a+(-2.3))}{2} , \frac{(b+2.2)}{2})[/tex] = (-0.1, -0.7)
[tex]\frac{(a+(-2.3))}{2} = -0.1[/tex]
[tex](a-2.3) = -0.1 \times 2[/tex]
[tex](a-2.3) = -0.2[/tex]
[tex]a = -0.2 +2.3[/tex]
a = 2.1
[tex]\frac{(b+2.2)}{2} = -0.7[/tex]
[tex](b+2.2)= -0.7 \times 2[/tex]
[tex](b+2.2)= -1.4[/tex]
[tex]b= -1.4 -2.2[/tex]
b = -3.6