According to Pizza Marketing Quarterly, the number of U.S. Domino's Pizza stores grew from 4,818 stores in 2001 to 4,986 stores in 2013. If the number of stores continue to grow linearly, when will there be 5,100 stores?

Respuesta :

Answer:

In the year of [tex]2022[/tex]

Step-by-step explanation:

In [tex]2001[/tex] number of stores[tex]=4818[/tex]

In [tex]2013[/tex] number of stores[tex]=4986[/tex]

Increase in the number of stores[tex]=4986-4818=168[/tex]

Years[tex]=2013-2001=12[/tex]

Per year increase in the number of stores[tex]=\frac{168}{12}=14[/tex]

Let after [tex]x\ years[/tex] (counting from [tex]2001[/tex]) number of stores[tex]=5100[/tex]

Increase in the number of stores[tex]=5100-4818=282\\[/tex]

[tex]Per\ year\ increase\times number\ of\ years=total\ increase\\\\14\times x=282\\\\x=\frac{282}{14}\\\\x=20.14\\\\Hence\ year=2001+20.14=2021.14[/tex]

So there will be [tex]5100[/tex] stores in the year [tex]2022[/tex].

The number of year should be 2022.

  • The calculation is as follows:

The increase in the no of stores should be

= 5,100 - 4,818

= 282

And, the per year increase should be

[tex]= ((4986 - 4818) \div (2013 - 2001)\\\\= 168 \div 12[/tex]

= 14

So,

= 2001 + [tex]282 \div 14[/tex]

= 2001 + 20.14

= 2022

Learn more: https://brainly.com/question/15622851?referrer=searchResults