Please explain how to solve the problem.

Answer:
Part 1) [tex]f(125)=6[/tex]
Part 2) [tex]f(-64)=-3[/tex]
Step-by-step explanation:
we have
[tex]f(x)=\sqrt[3]{x} +1[/tex]
Part 1) Find f(125)
we know that
f(125) is the value of the function f(x) when the value of x is equal to 125
so
For x=125
substitute in the function
[tex]f(125)=\sqrt[3]{125} +1[/tex]
Remember that
[tex]125=5^{3}[/tex]
substitute
[tex]f(125)=\sqrt[3]{5^{3}} +1[/tex]
Applying the power of rule
[tex]\sqrt[3]{5^{3}}=(5^{3})^{\frac{1}{3}}= (5)^{3*\frac{1}{3}}=5[/tex]
substitute
[tex]f(125)=5 +1=6[/tex]
Part 2) Find f(-64)
we know that
f(-64) is the value of the function f(x) when the value of x is equal to -64
so
For x=-64
substitute in the function
[tex]f(-64)=\sqrt[3]{-64} +1[/tex]
Remember that
[tex]-64=-4^{3}[/tex]
substitute
[tex]f(-64)=\sqrt[3]{-4^{3}} +1[/tex]
Applying the power of rule
[tex]\sqrt[3]{-4^{3}}=(-4^{3})^{\frac{1}{3}}= (-4)^{3*\frac{1}{3}}=-4[/tex]
substitute
[tex]f(-64)=-4 +1=-3[/tex]