Respuesta :

Answer:

Therefore Area of triangle RHP is 60 unit².

Step-by-step explanation:

Given:

RH ⊥ HP

HP = 15 = Longer leg

RP = 17 = Hypotenuse

RH = Shorter leg

To Find:

Area of Δ RHP = ?

Solution:

In Right Angle Triangle RHP By Pythagoras theorem we have

[tex](\textrm{Hypotenuse})^{2} = (\textrm{Shorter leg})^{2}+(\textrm{Longer leg})^{2}[/tex]

Substituting the values we get

[tex](RP)^{2}= (RH)^{2}+(HP)^{2}\\\\17^{2}-15^{2}= (RH)^{2}\\\\(RH)^{2}=64\\Square\ Rooting\ we\ get\\RH =\pm \sqrt{64} \\\therefore RP = 8\ unit\\[/tex]

Now Area of triangle is given as

[tex](\textrm{Area of triangle}=\dfrac{1}{2}\times Base\times Height[/tex]

Substituting the values we get

[tex](\textrm{Area of triangle RHP}=\dfrac{1}{2}\times HP\times RH[/tex]

[tex](\textrm{Area of triangle RHP}=\dfrac{1}{2}\times 15\times 8=60\ unit^{2}[/tex]

Therefore Area of triangle RHP is 60 unit².