Respuesta :

Answer:

The given equation can be  written as [tex]5t^3-4t^2+7t+16=0[/tex]

The factors of the equation is

[tex]5t^3-4t^2+7t+16=(t+1)(\frac{9+i\sqrt{239}}{10})(\frac{9-i\sqrt{239}}{10})[/tex]

Step-by-step explanation:

Given equation is [tex]t+\frac{4}{t}+\frac{3}{t}-4=-\frac{16}{t^2}-4t[/tex]

Now to solve the given equation:

[tex]t+\frac{4}{t}+\frac{3}{t}-4=-\frac{16}{t^2}-4t[/tex]

[tex]t+\frac{7}{t}-4=-\frac{16}{t^2}-4t[/tex]

[tex]\frac{t^2+7-4t}{t}=\frac{-16-4t^3}{t^2}[/tex]

Multiply the above equation into [tex]t^2[/tex] on both sides

[tex]\frac{t^2+7-4t}{t}\times t^2=\frac{-16-4t^3}{t^2}\times t^2[/tex]

[tex]t(t^2+7-4t)=-16-4t^3[/tex]

[tex]t^3+7t-4t^2=-16-4t^3[/tex]

[tex]t^3+7t-4t^2+16+4t^3=0[/tex]

Adding the like terms

[tex]5t^3+7t-4t^2+16=0[/tex]

Rewritting the above equation

[tex]5t^3-4t^2+7t+16=0[/tex]

We can solve this equation by synthetic division method

-1_|   5     -4       7     16

       0     -5       9    -16

    _______________

      5      -9       16     0

Therefore t+1 is a factor of this cubic equation

We have the quadratic equation [tex]5t^2-9t+16=0[/tex]

For quadratic equation [tex]ax^2+bx+c=0[/tex] the solution is

[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

where a and b are coefficients of [tex]x^2[/tex] and x respectively

Here a=5 ,b=-9 and c=16

[tex]t=\frac{-(-9)\pm\sqrt{(-9)^2-4(5)(16)}}{2(5)}[/tex]

[tex]t=\frac{9\pm\sqrt{81-320}}{10}[/tex]

[tex]t=\frac{9\pm\sqrt{-239}}{10}[/tex]

[tex]t=\frac{9\pm\sqrt{239i^2}}{10}[/tex] where [tex]i^2=-1[/tex]

[tex]t=\frac{9\pmi\sqrt{239}}{10}[/tex]

Therefore [tex]t=\frac{9+i\sqrt{239}}{10}[/tex] and [tex]t=\frac{9-i\sqrt{239}}{10}[/tex]

Therefore  the factors are t+1,[tex]\frac{9+i\sqrt{239}}{10}[/tex] and [tex]\frac{9-i\sqrt{239}}{10}[/tex]

[tex]5t^3-4t^2+7t+16=(t+1)(\frac{9+i\sqrt{239}}{10})(\frac{9-i\sqrt{239}}{10})[/tex]