Answer:
The value of is AB = BC = [tex]\frac{29}{3}[/tex] unit , AC is [tex]\frac{17}{3}[/tex] unit .
Step-by-step explanation:
Given as :
In a triangle ABC ,
Let The three sides be AB , BC , CA
Side AB = Side BC , ∠B = 90°
Perimeter of ΔABC =25 unit
Or, AB + BC + CA = 25 unit
Or, AB + AB + CA = 25 unit
i.e 2 AB + CA = 25 unit .....1
And Difference between two sides = 4
So, AB - CA = 4 unit .......2
Now, According to question
From eq 1 and eq 2
(2 AB + CA) + (AB - CA) = 25 unit + 4 unit
Or, (2 AB + AB) + (CA - CA) = 29
Or, 3 AB + 0 = 29
∴ AB = [tex]\frac{29}{3}[/tex] unit
∵ BC = AB
So, BC = [tex]\frac{29}{3}[/tex] unit
Again
∵ AB - CA = 4 unit
So, AC = AB - 4
Or, AC = [tex]\frac{29}{3}[/tex] unit - 4 unit
Or, AC = [tex]\frac{29 - 12}{3}[/tex] unit
i.e AC = [tex]\frac{17}{3}[/tex] unit
So, The value AB = BC = [tex]\frac{29}{3}[/tex] unit , AC = [tex]\frac{17}{3}[/tex] unit
Hence, The value of is AB = BC = [tex]\frac{29}{3}[/tex] unit , AC is [tex]\frac{17}{3}[/tex] unit . Answer