Respuesta :
Answer:
Ratio of area of triangles MNP and ABC is 1.05
Step-by-step explanation:
There are 2 triangles ABC and MNP.
We are given that ,m∠A = m∠M.
AB = 16 and AC = 10.
MN = 7 and MP = 24.
Area of a triangle ∝ Product of any two sides.
So area of triangle ABC ∝ 16[tex]\times 10[/tex]
Area of triangle ABC = 160[tex]\times k[/tex] ,
where k is a constant.
So area of triangle MNP ∝ 7 [tex]\times 24[/tex]
Area of triangle MNP = 168[tex]\times k[/tex]
So ratio of area of triangles = [tex]\frac{Area of MNP}{Area of ABC}[/tex]
= [tex]\frac{168}{160}[/tex]
= 1.05
Answer:
21 : 20
Step-by-step explanation:
Area of ABC
½ × AB × AC sinA
½ × 16 × 10 sinA
80sinA
Area of MNP
½ × MN × MP sinM
sinM = sinA because angle M = angle A
½ × 7 × 24 sinA
84sinA
Ratio:
MNP : ABC
84sinA : 80sinA
21 : 20