Answer: They meet in air after 1.6 seconds
Step-by-step explanation:
We have the equations that model the altitude of both parachutist:
[tex]y_{1}=-11t^{2}+500[/tex] (1)
[tex]y_{2}=-4.9(t-4)^{2}+500[/tex] (2)
Both parachutists meet in the air when [tex]y_{1}=y_{2}[/tex]:
[tex]-11t^{2}+500=-4.9(t-4)^{2}+500[/tex] (3)
Rearranging the equation:
[tex]-11t^{2}=-4.9(t^{2}-8t+16)[/tex] (4)
[tex]0=6.1 t^{2}+39.2t-78.4[/tex] (5)
Finding the positive solution for [tex]t[/tex] with the quadratic formula [tex]t=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}[/tex], where [tex]a=6.1[/tex], [tex]b=39.2[/tex], [tex]c=-78.4[/tex]:
[tex]t=\frac{-39.2\pm\sqrt{39.2^{2}-4(6.1)(-78.4)}}{2(6.1)}[/tex]
[tex]t=1.6 s[/tex] This is the time when both parachutists meet