The coordinates of point B are (-1,-5)
Step-by-step explanation:
The formula for mid-point is given by:
[tex]M = (\frac{x_1+x_2}{2} , \frac{y_1+y_2}{2})[/tex]
Given
M(x,y) = (-3,-3)
A(x1,y1) = (-5, -1)
We have to find the coordinates of B(x2,y2)
So,
[tex]M(x,y)= (\frac{x_1+x_2}{2} , \frac{y_1+y_2}{2})\\(-3,-3) = (\frac{-5+x_2}{2} , \frac{-1+y_2}{2})\\putting\ respective\ coordinates\ equal\\-3 = \frac{-5+x_2}{2}\\-3 * 2 = -5+x_2\\-6 = -5+x_2\\-6+5 = x_2\\x_2 = -1\\And\\-3 = \frac{-1+y_2}{2}\\-3*2 = -1+y_2\\-6 = -1+y_2\\-6+1 = y_2\\y_2 = -5[/tex]
Hence,
The coordinates of point B are (-1,-5)
Keywords: Mid-point, coordinates
Learn more about mid-point at:
#LearnwithBrainly