Which is the simplified form of the expression (StartFraction (2 Superscript negative 3 Baseline) (x Superscript negative 3 Baseline) (y squared) Over (4 Superscript negative 2 Baseline) (x Superscript 4 Baseline) (y Superscript 6 Baseline) EndFraction) Squared

Respuesta :

Answer: [tex]\frac{4x^{14}}{y^{8}}[/tex]

Step-by-step explanation:

We have tthe following expression:

[tex](\frac{2^{-3} }{x^{-3}} \frac{y^{2}}{4^{-2}} \frac{x^{4}}{y^{6}})^{2}[/tex]

Firstly, we have to solve the oeprations inside the parenthesis. Let's begin by grouping similar coefficients:

[tex](\frac{2^{-3} }{4^{-2}} \frac{x^{4}}{x^{-3}} \frac{y^{2}}{y^{6}})^{2}[/tex]

Rewriting the expression:

[tex](\frac{4^{2} }{2^{3}} x^{4} x^{3}\frac{1}{y^{4}})^{2}[/tex]

[tex](\frac{2x^{7} }{y^{4}})^{2}[/tex]

Multiplying the exponent outside the parenthesis with the exponents inside:

[tex]\frac{4x^{14}}{y^{8}}[/tex] This is the final result

Answer:

THE ANSWER IS C

Step-by-step explanation:

on edge. :)