Respuesta :

[tex]\frac{2 \sin ^{2} \alpha-1}{\sin \alpha+\cos \alpha} = sin \alpha - cos \alpha[/tex]

Solution:

Given that we have to simplify:

[tex]\frac{2 \sin ^{2} \alpha-1}{\sin \alpha+\cos \alpha}[/tex] ---- eqn 1

We know that,

[tex]sin^2 x = 1 - cos^2 x[/tex]

Substitute the above identity in eqn 1

[tex]\frac{2\left(1-\cos ^{2} \alpha\right)-1}{\sin \alpha+\cos \alpha}[/tex]

Simplify the above expression

[tex]\frac{2-2 \cos ^{2} \alpha-1}{\sin \alpha+\cos \alpha}[/tex]

[tex]\frac{1-2 \cos ^{2} \alpha}{\sin \alpha+\cos \alpha}[/tex] ------- eqn 2

By the trignometric identity,

[tex](sin x + cos x)(sin x - cos x) = 1-2cos^2 x[/tex]

Substitute the above identity in eqn 2

[tex]\frac{(\sin \alpha+\cos \alpha)(\sin \alpha-\cos \alpha)}{\sin \alpha+\cos \alpha}[/tex]

Cancel the common factors in numerator and denominator

[tex]\frac{(\sin \alpha+\cos \alpha)(\sin \alpha-\cos \alpha)}{\sin \alpha+\cos \alpha}=\sin \alpha-\cos \alpha[/tex]

Thus the simplified expression is:

[tex]\frac{2 \sin ^{2} \alpha-1}{\sin \alpha+\cos \alpha} = sin \alpha - cos \alpha[/tex]