Respuesta :

Answer:

The area of triangle is 48.

Step-by-step explanation:

Given:

The vertices of triangle are (0,0),(12,0),(2,8).

Now, to find the area of triangle.

So, the coordinates of triangle are:

[tex]A(x_1,y_1)=(0,0)\:,\:B(x_2,y_2)=(12,0)\:and\:C(x_3,y_3)=(2,8)[/tex].

Now, to get the area of triangle we put formula:

[tex]Area\,of\,triangle\,=\,\frac{1}{2}\left|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)\right|[/tex]

[tex]Area\,of\,triangle\,=\,\frac{1}{2}\left|0(0-8)+(12)(8-0)+2(0-0)\right|[/tex]

[tex]Area\,of\,triangle\,=\,\frac{1}{2}\left|0\times -8+12\times 8+2\times 0\right|[/tex]

[tex]Area\,of\,triangle\,=\,\frac{1}{2}\left|0+96+0\right|[/tex]

[tex]Area\,of\,triangle\,=\,\frac{1}{2}\left|96\right|[/tex]

[tex]Area\,of\,triangle\,=\,\frac{1}{2}\times 96[/tex]

[tex]Area\,of\,triangle\,=\,\frac{96}{2}[/tex]

[tex]Area\,of\,triangle\,=\,48.[/tex]

Therefore, the area of triangle is 48.