The salon charges $12 for manicure and $23 for pedicure.
Step-by-step explanation:
Let,
x be the charges for each manicure.
y be the charges for each pedicure.
According to given statement;
16x+37y=1043 Eqn 1
47x+36y=1392 Eqn 2
Multiplying Eqn 1 by 47
[tex]47(16x+37y=1043)\\752x+1739y=49021\ \ \ Eqn\ 3[/tex]
Multiplying Eqn 2 by 16
[tex]16(47x+36y=1392)\\752x+576y=22272\ \ \ Eqn\ 4[/tex]
Subtracting Eqn 4 from Eqn 3
[tex](752x+1739y)-(752x+576y)=49021-22272\\752x+1739y-752x-576y=26749\\1163y=26749[/tex]
Dividing both sides by 1163
[tex]\frac{1163y}{1163}=\frac{26749}{1163}\\y=23[/tex]
Putting y=23 in Eqn 1
[tex]16x+37(23)=1043\\16x+851=1043\\16x=1043-851\\16x=192[/tex]
Dividing both sides by 16
[tex]\frac{16x}{16}=\frac{192}{16}\\x=12[/tex]
The salon charges $12 for manicure and $23 for pedicure.
Keywords: linear equation, elimination method
Learn more about elimination method at:
#LearnwithBrainly