The cost of one roll of plain wrapping paper is $8 and one roll of holiday wrapping paper is $14.
Step-by-step explanation:
Let,
Cost of one plain wrapping paper = x
Cost of one holiday wrapping paper = y
According to given statement;
6x+y=62 Eqn 1
3x+10y=164 Eqn 2
Multiplying Eqn 2 by 2
[tex]2(3x+10y=164)\\6x+20y=328\ \ \ Eqn\ 3[/tex]
Subtracting Eqn 1 from Eqn 3
[tex](6x+20y)-(6x+y)=328-62\\6x+20y-6x-y=266\\19y=266[/tex]
Dividing both sides by 19
[tex]\frac{19y}{19}=\frac{266}{19}\\y=14[/tex]
Putting y = 14 in Eqn 1
[tex]6x+14=62\\6x=62-14\\6x=48[/tex]
Dividing both sides by 6
[tex]\frac{6x}{6}=\frac{48}{6}\\x=8[/tex]
The cost of one roll of plain wrapping paper is $8 and one roll of holiday wrapping paper is $14.
Keywords: linear equation, elimination method
Learn more about linear equations at:
#LearnwithBrainly