Respuesta :

Answer:

B) [tex]\frac{1}{cot\theta}[/tex].

Step-by-step explanation:

We have to find out the reciprocal of [tex]tan\theta[/tex].

We have drawn a triangle for your reference.

In which [tex]\angle C=\theta[/tex]

AB = opposite side

BC = adjacent side

CA = hypotenuse

Since we know that the [tex]tan\theta[/tex] is equal to opposite side upon adjacent side.

[tex]tan\theta=\frac{opposite\ side}{adjacent\ side}=\frac{AB}{BC}[/tex]

Or [tex]tan\theta=\frac{sin\theta}{cos\theta} \ \ \ \ equation\ 1[/tex]

Where as  the [tex]cot\theta[/tex] is equal to adjacent side upon opposite side.

Therefore,

[tex]cot\theta=\frac{adjacent\ side}{opposite\ side}=\frac{BC}{AB}[/tex]

Or [tex]cot\theta=\frac{cos\theta}{sin\theta} \ \ \ \ equation \ 2[/tex]

From equation 1 and equation 2 we can say that;

[tex] tan\theta=\frac{1}{cot\theta}[/tex]

Hence [tex]tan\theta=\frac{1}{cot\theta}[/tex].

Ver imagen jitumahi76